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Abstract

The efficiency of pattern recognition is critical when there are a large number of
classes to be discriminated, or when the recognition algorithm must be applied a large
number of times. We propose and analyze a general technique, namely pattern rejection,
that leads to great efficiency improvements in both cases. Rejectors are introduced as
algorithms that very quickly eliminate from further consideration, most of the classes or
inputs (depending on the setting). Importantly, a number of rejectors may be combined to
form a composite rejector, which performs far more effectively than any of its component
rejectors. Composite rejectors are analyzed, and conditions derived which guarantee both
efficiency and practicality. A general technique is proposed for the construction of rejectors,
based on a single assumption about the pattern classes. The generality is shown through a
close relationship with the Karhunen-Loéve expansion. Further, a comparison with Fisher’s
discriminant analysis is included to illustrate the benefits of pattern rejection. Composite
rejectors were constructed for two applications, namely, object recognition and local feature
detection. In both cases, a substantial improvement in efficiency over existing techniques
is demonstrated.

Index Terms: Pattern recognition, computational efficiency, pattern rejection, composite
rejector, object recognition, feature detection, edge detection, Fisher’s discriminant analy-
sis, Karhunen-Loéve expansion.
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1 Introduction

We address the efficiency of pattern recognition, which is known to be vital when the
number of classes involved is large. An example application in computational vision is
object recognition, which in many cases can be reduced to a classical pattern recognition
problem [Murase and Nayar 95]. Of particular importance in this context, is the growth
rate of the recognition time as a function of the number of classes (objects). High efficiency
also proves critical when the recognition algorithm must be applied a large number of times.
This is the case in local feature detection [Nalwa 93] [Nayar et al. 95], where the detector
needs to be applied at every pixel in an image.

We propose a general theory that results in substantial efficiency improvements in
both of the above scenarios. The theory is based upon the central notion of a rejector. A
rejector is an algorithm that efficiently eliminates from further consideration, most of the
large number of classes (e.g. objects in recognition) or inputs (e.g. local image windows in
feature detection). While the intuitive concept of a rejector is simple, its formalization is
significant since it leads immediately to the following important observations and results
that constitute the proposed theory:

1. The definition of correctness for a rejector is much less constraining than that for a
classifier (recognizer). In particular, a rejector is only required to eliminate most of
the classes or inputs most of the time, which is substantially less demanding than
requiring perfect classification all of the time. As a result, rejectors can be constructed
that are far more efficient than corresponding classifiers.

2. Although, in general, a rejector does not provide the final solution to the pattern
recognition problem, it significantly reduces the number of possible classes or inputs
to consider. Consequently, the recognizer can dedicate its computational resources
to a much smaller number of candidates. In doing so, pattern rejection is taking
advantage of the fact that the average case complexity of the recognition problem
is generally far less than the worst case complexity. In both example applications
mentioned above, namely object recognition and feature detection, this is the case.

3. Perhaps the most crucial aspect of pattern rejection is that, since a rejector eliminates
a large number of classes (inputs), the task remaining after applying a rejector is a
smaller instance of the original recognition problem. Hence, a collection of rejectors
may be combined recursively in a directed acyclic graph structure to form a composite
rejector. At each node of the composite rejector is a simple (as opposed to composite)
rejector. Significantly, each such simple rejector may be individually designed for the
set of classes (inputs) not eliminated by the parent rejector in the graph.

Each application of the composite rejector corresponds to a path through the directed
acyclic graph. At each node in the path, the associated simple rejector is applied
thereby eliminating more of the classes (inputs). Since each subsequent rejector
is constructed for a smaller subset of the classes (inputs), child rejectors are able
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to eliminate classes (inputs) that their predecessors where not able to. Overall, the
recursive structure results in the composite rejector having much more discriminatory
power than any of its component rejectors.

4. Another very important property of composite rejectors, is that it is possible to ana-
lyze their performance in terms of the performance of their components. For instance,
we derive conditions that guarantee logarithmic time complexity of recognition, in
terms of the total number of classes involved. We also analyze the preprocessing and
space requirements of a composite rejector, in particular providing conditions that
ensure practicality.

5. We propose a simple general purpose technique for constructing the component re-
jectors of a composite rejector. The technique is based on a single assumption about
the nature of the pattern classes, namely, the class assumption. The generality of the
class assumption is establishing by exhibiting a close relationship with the Karhunen-
Loéve (K-L) expansion [Fukunaga 90] [Oja 83]. Hence, we expect the proposed re-
jection technique to be applied successtully in any application for which the K-L
expansion is beneficial.

We demonstrate the significance of pattern rejection via experiments on applica-
tions in appearance matching based object recognition [Murase and Nayar 95| and feature
detection [Nayar et al. 95]. First, we constructed a composite rejector for a widely used
image database of 20 objects, each of which constitutes a pattern class. The appear-
ance of each object changes considerably as the pose of the object varies. However, the
composite rejector was able to completely, and without error, discriminate between all 20
objects. The efficiency is shown to be a substantial improvement over the technique used in
[Murase and Nayar 95], which similarly achieved perfect recognition. We also empirically
illustrate logarithmic growth in the time complexity of the composite rejector. Further,
when compared with Fisher’s discriminant analysis [Duda and Hart 73], the composite re-
jector is seen to be both significantly more efficient as well as more accurate. Discriminant
analysis, even at its peak performance, has an error rate of slightly over 3%, in contrast to
the error-free performance of the composite rejector. Finally, we constructed a composite
rejector for the task of feature detection. This results in a very efficient method of pre-
processing an image to identify pixels that truly deserve the application of a full-fledged
feature detector, such as the one proposed in [Nayar et al. 95].

The remainder of this paper is organized as follows. In Section 2 we discuss the
relationship of pattern rejection to previous work. We proceed in Section 3 to introduce
the notions of a rejector and of a composite rejector. We also analyze the time and space
complexities of composite rejectors. In Section 4, we describe the construction of the indi-
vidual rejectors that go to form a composite rejector. Section 5 presents our experimental
results, and Section 6 concludes the paper with a brief discussion of this and future work.



2 Related Work

The recursive structure of the composite rejector constitutes a decision tree, or more gen-
erally a directed acyclic graph. A complete survey of work that use such a structure
is well beyond the scope of this paper, but a small selection’ is [Henrichon and Fu 69]
[Payne and Meisel 77] [Weng 94]. In general, a composite rejector has a directed acyclic
graph structure, as opposed to simply a tree structure, because there are many different
orders in which classes may be rejected. Hence there may be a large number of different
possible paths leading to any one node in the composite rejector. Connections can also be
drawn between our results and the large body of work on computationally motivated near-
est neighbor classifiers [Friedman et al. 77] [Bentley 80] [Yianilos 93]. Though the problem
we address is somewhat similar, namely, efficient classification, our setting is more general.

The major novelty of our approach is the central role played by the pattern classes.
It is this which leads to the composite rejectors having a directed acyclic graph structure,
rather than a tree structure. Existing work which is concerned with complexity, either
models the classes as collections of points, or studies partitions of space. Hence, our
efficiency results are in terms of the number of classes, rather than the number of sample
points, or the extent to which space is partitioned. We regard this class-centered approach
a more natural model of the problem. Importantly, it also focuses attention on what
we believe to be the key question: What properties must the pattern classes possess for
recognition to be performed efficiently? The introduction of the class assumption is an
attempt to answer this question, and to characterize what it means for a pattern class to
have a “simple” rather than a “complex” decision boundary.

A relationship can be established between our technique for rejector construction and
Fisher’s discriminant analysis [Fisher 36] [Duda and Hart 73]. In particular, our rejection
vector will be seen intuitively to maximize between-class scatter, while keeping within-class
scatter fixed at a low level. The major differences between rejection theory and discriminant
analysis are the following:

1. Discriminant analysis is presented as a single level of processing. On the other hand, a
composite rejector has a hierarchical structure, which leads to superior performance.
In particular, the relative performance is accounted for by the fact that child rejectors
are individually constructed for reduced subsets of classes. Further, the second and
subsequent Fisher vectors can be regarded as suboptimal when compared to the
rejection vectors of the children in the composite rejector. Weng [Weng 94] uses a
similar hierarchical structure which also takes advantage of this.

2. Whereas rejection is geared towards the computational efficiency of recognition, dis-
criminant analysis is concerned with representational compactness. This paper, in
part, illustrates the relationship between the two. Pattern rejection can be regarded
as an attempt to bring together ideas from the nearest neighbor literature, which is

LA brief discussion on decision trees can also be found in [Duda and Hart 73].



primarily concerned with complexity issues, and the pattern recognition literature,
which is more concerned with representational issues.

3. A weakness of discriminant analysis is that there is little known about when it can
be expected to work. In contrast, for rejectors, our results provide much insight into
this issue. Central in this respect is the class assumption.

3 Theory

In this section, we begin by defining both classifiers and rejectors as algorithms. The
notion of a rejection-based classifier is introduced and its efficiency is discussed. Next, the
general concept of a composite rejector is put forth and its time and space requirements
are analyzed.

3.1 The Setting

A pattern recognition task is always based on a finite set of measurements of an underlying
physical process. In this paper, we restrict attention to the case where the measurements
consist of real numbers. However, even if the measurements are discrete valued, it is often
both simple and desirable to convert them into reals. Hence, we assume the existence of
a classification space, S = R?, where the integer, d, is the number of measurements taken.
Elements, z € S, will be referred to as measurement vectors, or for convenience, vectors.

For each pattern class that is to be recognized, we can, at least conceptually, consider
the set of measurement vectors that should ideally? be classified as belonging to that class.
So, we assume the existence of a finite collection, Wy, Wy, ..., W,  C S, of pattern classes,
or simply classes. The classes themselves are defined by the application in question and we

will therefore assume that they are given to us a priori®.

20ur model of pattern recognition is deterministic in the sense that for every measurement vector
and every class, the vector is either a member of the class, or not a member of the class. Probabilistic
(Bayesian) models, where a measurement vector is assigned a probability of being a member of a given class,
are subsumed by this model. Since probabilistic models are meaningless in isolation and without a decision
theory, we can regard the classes, W;, as being defined by, say, the Bayes decision rule [Duda and Hart 73].

3There are a number of ways in which the classes can be obtained [Fukunaga 90]. One possibility is
that the classes are derived using an analytical model of the underlying physical process, such as is the case
in parametric feature detection [Nalwa 93] [Nayar et al. 95]. In many applications, however, modeling the
underlying physical process proves extremely difficult. Then, the classes are often empirically estimated
using sample measurement vectors of known classification. This procedure, which relies on some form of
interpolation between sample points, has been the most widely studied problem in pattern recognition. For
our purposes, we assume that that an appropriate model of interpolation has been decided upon, which
then defines the classes W;. We proceed to address efficient classification.



3.2 Basic Definitions

A classifier is simply an algorithm that returns the class label (if any) of the class in which
the input measurement vector lies:

Definition 1 A classifier is an algorithm, ¢, that given an input, x € S, returns the class

label, i, of the class® for which x € W;. If Vi, x € W;, the classifier, ¢, returns nothing.

We now introduce a rejector as a generalization of a classifier. It is a generalization
in two senses: (a) a rejector returns a set of class labels rather than a single label, and
(b) although the set of labels must contain the label which a correctly functioning classifier
would return, it is also allowed to contain more:

Definition 2 A rejector is an algorithm, i, that given an input, x € S, returns a set of

class labels, ¥(x), such that x € W; = 1 € ¥(x) (or equivalently i & (z) = « & W;).

The name rejector comes from the equivalent definition: ¢ € (z) = & ¢ W;. That is, if
¢ is not in the output of the rejector, we can safely eliminate® the class, W;, from further
consideration. On the other hand, if ¢ € ¥(x), we cannot be sure whether € W; or not.
For notational convenience, we now introduce the term, rejection domain, for the set of all
x € S for which the class, W;, can be rejected:

Definition 3 If ¢ is a rejector, and W; is a class, then the rejection domain, R;/’, of 1,
for class, W;, is the set of all x € S for which i & (z).

Then, the following three important properties hold:

1. For any valid rejector, ), each class, W;, and its corresponding rejection domain, R;-b,
are disjoint (RZ/J NW; = 0). This follows immediately from the above definitions since:

z€W;, (Def'n2)= icd(z) (Defn3)= z¢R/ (1)

2. Subject to the one constraint that, R;-p N W, = (), we are completely free to choose
the rejection domains and still conform with the correct definition of a rejector:

€W, (RENW;=0)= z¢R’ (Def'n3)= ic(z) (2)

The resulting freedom to choose rejection domains with “simple” decision boundaries,
is what allows rejectors to be efficient.

4This definition of a classifier implicitly assumes that the classes, W;, are disjoint, which is often the
case. Generalization to the non-disjoint case is straightforward.

5 Although this is phrased as the class, W;, being eliminated, more generally, we can think of the pair of
input and class, (2, W;), as being rejected. Hence, depending on the setting, we can view either the input,
z, or the class, W;, as being ruled out.



3. As argued above, the rejector, ¥, can be used to eliminate W; from further consid-
eration if and only if ¢ & ¥ (z), and by Definition 3, that is if and only if = € RY.
Hence, to reject as many classes (inputs) as possible, we should aim to choose the
rejection domains, R;-Z}, to be as large as possible. However, there is a trade-off be-
tween maximizing F; , ensuring Rzp N W; = 0, and using simple decision boundaries
for efficiency.

3.3 Rejection Based Classifiers

Applying a rejector does not guarantee that we will always be able to uniquely classify an
input, since there may be more than one class in the output of the rejector. We deal with
this potential ambiguity by adding a verification stage:

Definition 4 A verifier for a class W; is a boolean algorithm which, given an input, v € S,
returns the result, 1, if © ts a member of W;, and 0 otherwise.

We form a rejection-based classifier, ¢"°, by first applying a rejector, 1, and then
applying a verifier for each class, W;, where ¢ € t(z), the output of the rejector. From the
outputs of the verifiers, we can immediately classify the input, € S. The efficiency of the
rejection-based classifier is given by:

Too(¢") = Ton(¥) + Ezes([¢(2)]) - Toer (3)

where, T,,(¢") is the average run time of the rejection-based classifier, T}, (1) is the average
run time of the rejector, F.es(|w(x)|) is the expected cardinality of the rejector output,
and T, is the run time of each of the verifiers (assumed to be the same for all verifiers).
Equation (3) is derived by noting that we must always apply the rejector (which contributes
the term, 75,,(¢)) and that on average we must apply F.es(|t)(x)|) verifiers.

The reason for introducing a rejection-based classifier is that we aim to be able
to construct very efficient rejectors which are also very good at eliminating most of the
classes. Hence, both T,,(¢) and E,es(|¥(x)]) will be small quantities, leading to efficient
classification. With T,,(1) as the measure of the efficiency of a rejector, we now introduce
effectiveness as a measure of how well a rejector eliminates classes:

Definition 5 If ¢ is a rejector designed for the n classes, Wy, ..., W, , we define the ef-
fectiveness of ¥ by:
Ezes(|(z)])

n

Eff (1) = (4)
Note that a small numeric value of Eff(¢)) corresponds to an “effective” rejector. Then,
equation (3) shows that a rejection-based classifier will be efficient when: (a) rejection is
efficient, and (b) rejection is effective.



3.4 Composite Rejectors

As we will see, constructing very efficient rejectors is straightforward. However, in some
applications, these rejectors tend to be less effective than might be hoped for. Although a
rejector may eliminate a large percentage of the classes, on average a substantial number
may also be left as possibilities. However, since the output of a rejector is a subset of
classes (which is simply a smaller instance of the original classification problem), we may
recursively apply another rejector. If the new rejector is specifically designed for the reduced
subset of classes, it may well be able to eliminate some classes which the original rejector
was unable to. The result of a such a combination of rejectors is a significant improvement
in the overall effectiveness. This is the notion of a composite rejector:

Definition 6 A composite rejector, W, is a collection of rejectors, ¥ = {1, : 1 € I},

where S s an index set for V, such that:
(a) Fach rejector in ¥ is designed to be applied to some subset of {W1,..., W,}
(b) There is a rejector in ¥ designed for the complete set of classes, {Wh,..., W,}
(c) For any rejector, ¥, € U, and any x € S, either [,(x)| < 1 or there is a rejector
in U designed for the subset of classes, {W;: i € ¥,(x)}

As indicated above, a composite rejector is applied by first applying the rejector
designed for the complete set of classes. This yields a subset of the class labels and a
reduced instance of the classification problem. By requirement (¢) in the above definition,
the composite rejector contains a rejector designed for the reduced set of classes. Hence,
we can repeatedly apply rejectors in this manner, systematically reducing the number of
classes at each step, until we are left with only one class. Alternatively, we may terminate
if the rejector fails to result in a reduction in the number of remaining classes (and there
are no other® unapplied rejectors in W designed for the current set of classes).

The composite rejector is laid out in the form of a directed acyclic graph. Each
rejector, ¥, € W, and the subset of classes for which it was designed, corresponds to a
node in the graph. There is a directed edge from the node corresponding to ¥, to that
corresponding to v, if and only if there is a measurement vector, x € S, such that 1,
was designed for the subset of classes, {W; : ¢ € o, (z)}. (If ¢, and @, are designed for
the same set of classes, to preserve acyclicity, we only include this edge if ¢ < j.) Hence,
the application of the composite rejector to any measurement vector corresponds to a path
through the directed acyclic graph. At each node in the path, the associated rejector
is applied and its output determines the edge that should be taken to leave the node.
Before we detail the construction of composite rejectors, we analyze their time and space
requirements.

51t is entirely possible within our definition that a composite rejector may contain several rejectors
designed for the same set of classes. This allows the opportunity to try a number of alternative rejectors,
increasing the chance that one of them will be successful in rejecting some of the classes. Using multiple
rejectors in this way is especially useful in cases where there is just one class to be recognized, for example
in feature detection.



3.5 Time Analysis

Intuitively, the motivation for introducing a composite rejector is that designing a rejector
for a reduced set of classes should be easier and enable the rejection of classes not previously
eliminated. Hence, we expect that the composite rejector will be far more effective than
any of its individual constituent rejectors, at the cost of a slight reduction in efficiency.
The recursive structure of the composite rejector leads us to expect the complexity of the
resulting rejection-based classifier to be logarithmic in the number of classes. Sufficient
conditions to prove such a result are as follows:

1. Forall ¥, € ¥ and = € S, either |¢,(2)| < 1, or at least one class is eliminated by ,.

2. With respect to the underlying a prior: probability density function from which the

?

measurement vectors are drawn, the events, R;P , are mutually independent.

3. The effectiveness of all the component rejectors is the same: Vi € &, Eff(¢),) = E, say.

Then, a composite rejector truncated to apply at most & simple rejectors, has an effective-
ness bounded above by % + EF. This follows from the fact that condition 1 given above
implies that either we have at most one class left, or we have another rejector to apply.
The first case is covered by the term %, and so we can assume the second case applies.
Conditions 2 and 3 ensure that, for each subsequent rejector, the effectiveness is reduced
by a factor of £, hence the term E*. Setting k = ﬂogE—1 n| and then using the truncated

composite rejector in a rejection-based classifier, ¢"*, we have logarithmic time complexity:
T (67%) < Moggmt 1] - Tres +2- Toe (5)

where, T,.; is the run time of each of the rejectors in ¥ (assumed constant), and n is the
number of classes.

3.6 Space Analysis

A potential problem with the composite rejector is that the number of rejectors within ¥
may become very large, possibly as many as 2", the number? of subsets of {W7,..., W, }. To
avoid such exponential growth in the space and preprocessing requirements of the composite
rejector, we must impose further constraints on each rejector, ¥, € U. We require that:

1. For each simple rejector, v, the number of different possible output subsets is two.

2. The two possible output subsets of classes are of equal cardinality.

“There may possibly be more if we have several rejectors per subset of classes. So, in what follows, we
will assume that we construct at most one rejector for any given subset of classes. For similar reasons, we
also assume that we only construct rejectors if they can actually be reached from the initial rejector, that
is, the one for the complete set of classes.



3. The intersection between the two outputs consists of at most a fraction, € € [0, 1), of
the number of classes for which the rejector was constructed.

Then, if we denote by M(n) the maximum number of rejectors in ¥ that may be reached
after, and including, a rejector constructed for a collection of n classes, we have:

M(n) <142 -M((1+¢) - -n/2) (6)
By induction on n, it can be proven that M(n) is polynomial in n:
M(n) < pl/(-loga(1+€)) _ (7)

For € = 0, the bound is M(n) <n — 1, and for e = \/2 — 1 & 0.41, it is M(n) < n*— 1.

In practice, it may not be possible to completely satisty the three requirements
stated above. However, the following three design criteria may be used as guidelines while
implementing each rejector in the composite rejector, U: (a) avoid rejectors that produce a
large number of outputs, (b) attempt to balance the output cardinalities, and (c) minimize
the overlap between the outputs.

4 Construction of Composite Rejectors

As explained in the previous section, a composite rejector has a hierarchical structure that
includes a number of simple rejectors as components. We now describe the general purpose
technique used to construct each of the component rejectors. The composite rejector is
then formed by recursively building the component rejectors, starting with one for the
complete set of classes. Depending upon the application, alternative methods of rejector
construction may be possible. If so, they can easily be combined with the following in the
composite rejector.

4.1 Notation

We write the Euclidean inner (dot) product of two vectors, z,y € S, as, {(x,y) = >0, =i,
where z;, y; are the coordinates of the vectors z,y € S respectively. The induced Fuclidean
(1) norm we denote by ||z|| = (z, z)'/?. We assume that the norm of a vector is unimportant
for classification purposes. It is only the direction of the vector that matters. Hence, we
restrict attention® to the surface of the unit ball, B = {z € S: ||z|| = 1}. We will assume
that both the measurement vectors, and the classes, Wy, W5, ..., W, have been normalized
and thus lie in B. Normalization can be achieved by replacing x € S, with HQCTH € B.

8The assumption that all the vectors lie in B is not restrictive in the following sense. It is possible to code
the magnitude of a vector, z € S = R?, in a vector of unit norm in R4+, The vector, z = (z1, 22, ..., z4)7,
is replaced with, 2’/ = (z1,%2,...,24,1)T, and then 2’ is normalized. The magnitude of z is then encoded
in the last coordinate of z'/|2'||.
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Figure 1: An illustration of the class assumption for a low dimensional example, S = R>. The
subspace, L;, is the 2 dimensional subspace spanned by the vectors, {eq, e3}. Every vector in W;
can be approximated to within an error, é;, by the linear combination of ¢; and a vector in L;.
The rejection vector, r, is a unit vector orthogonal to the subspace L;. The rejection domain,
R;-Z}T, of the derived rejector, t,, consists of all points, 2 € B, which have a projection in the
direction of the rejection vector, r, at least ¢; away from the projection of ¢;.

4.2 The Class Assumption

Designing a rejector is equivalent to deciding on the rejection domains associated with each
of the classes. Since for correctness we require that R;»/j N W; = 0, the choice of rejection
domains depends heavily on the nature of the underlying classes. Hence, we make the
following assumption, which is illustrated in Figure 1:

Class Assumption: For each class, W;, there exists a vector, ¢; € S, a linear subspace,
L; C S, and a threshold, 6; > 0, such that Vo € W;, dist(x, ¢;+ L;) < 6;. Further we assume,
that: (a) dim(L;) < d, and (b) é; < 1.

It is therefore assumed that any vector in the class can be approximated to within
a small error, 6;, by a linear combination of a fixed vector, ¢;, and a vector in the subspace,
L;. For the class assumption to be useful, it must be: (a) general enough to apply in a large
number of applications, and (b) restrictive enough to facilitate the construction of rejectors
which are both efficient and effective. In the following sections, we first demonstrate the
generality of the class assumption by showing its relationship with the Karhunen-Loéve
(K-L) expansion. Then, we proceed to show how the class assumption leads to a efficient
and effective general form for a rejector.
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4.3 Relationship with the K-L Expansion

The class assumption can be seen to be very general and allows many different forms for
the classes, W;, including, for instance, disconnected multi-cluster distributions. Its true
generality can be demonstrated by noting that it is approximately equivalent to assuming
that the application of the K-L expansion [Fukunaga 90] [Oja 83] results in a compact and
accurate representation of the class, W;. Suppose that MP¥ is the subspace spanned by the k
most important K-L eigenvectors, and {\; : i = 1,...,d} are the decaying K-L eigenvalues.
Then, we have:

d
Egew, (dist(z, Eyew,(y) + Mik)Q) = Z As (= 0) (8)
s=h+1
Using ¢; in place of E.cw,(x) and L; in place of Mf, we see that the sole difference between
the class assumption and the K-L expansion is one of expected versus maximum value of
the error in the class representation. Hence, the widespread use of the K-L expansion allows
us to argue that the class assumption can be expected to hold extensively.

4.4 Verifying the Class Assumption

Since the K-L expansion may be computed efficiently (see for example [Chittineni 81] or
[Murakami and Kumar 82]), we use it to validate the class assumption and moreover to
find L; and ¢;. For each class, W;, we put ¢; = E,ew, (), and take L; to be the subspace
spanned by the k most important K-L eigenvectors. With these estimates in place, it is
straightforward to check if the maximum representation error, é;, is sufficiently small. (A
better method of selecting the thresholds is discussed in Appendix A.)

Inherent in the class assumption is a trade-off. If we are prepared to accept the use
of a subspace with higher dimensionality, we can expect to be able to reduce ¢;. Similarly,
if we reduce k = dim(L;), we will generally need to increase ¢;. There is an equivalent
trade-off in the Karhunen-Loéve expansion between the compactness and accuracy of the
representation. In our implementation, the value of k is dependent on the particular class,
and is chosen by thresholding the sum of the discarded eigenvalues.

4.5 Derivation of a General Purpose Rejector
Given that the class assumption holds, we are now in a position to derive a general form

for a rejector. We begin by defining the notion of a rejection vector, which is illustrated in
Figure 1:

Definition 7 Suppose the class assumption holds for Wy, ..., W,. Then a rejection vector
is a unit vector, r € B, for which r L @7, L; (equivalently, r is orthogonal to L; for allz).

11
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Figure 2: The effect of applying a rejection vector, r. The function & — (r,z) maps each class,
Wi, onto the interval, [(r,¢;) — 6;,(r,¢;) + 8;]. So long as the §; are small and the centers of the
intervals, (r,¢;), are well separated, most pairs of intervals will not intersect. This makes the
rejection vector a highly effective one. Given a measurement vector, z € B, the output of the
derived rejector, 1, (z), consists of all ¢ for which (r, z) lies in the interval [(r, ¢;) — &;, (r, ¢;) + 6]

If r is a rejection vector, it follows from the class assumption, the Cauchy-Schwarz inequality
and orthogonality, respectively, that:

zeW, = el |la+li—z||<b = |(rnat+li—z)| < b = |(rya)—(r,z)| <6 (9)

Equation (9) means that the rejection vector, r, projects every measurement vector of
an entire class, W;, onto the subinterval, [(r,¢;) — 6;, (r,¢;) + 6], of the real line. Since
0; < 1, this interval is almost a point, and so a compact characteristic of the class. More
importantly, if a measurement vector is not projected into the short interval, [(r,¢;) —
i, (r, ;) + 6;], the class, W, can be safely rejected.

So long as the thresholds, ¢;, are small, and the centers of the intervals, (r,¢;), are
well spread out, the intervals themselves will not overlap significantly, as illustrated in
Figure 2. Then, we can easily discriminate” between the classes based on their projections,
and so define the derived rejector as follows:

Definition 8 Given that the class assumption holds for the classes Wi, Wy, ..., W,, and
that r € B is a rejection vector, we define the derived rejector, ., by:

tePr(z) & |(rz) —(ra) < é (10)

Hence, the derived rejector returns the class labels of any classes, W;, for which the point,
(r,x), lies in the interval, [(r,¢;) — é;, (r,¢;) + 6], that is the class labels of any class from

®There is no guarantee that we will be able to find a rejection vector that will completely distinguish
between a given pair of classes. For example, if the convex hulls of the classes overlap, their projections
with any rejection vector will intersect. Note, however, that this occurrence need not effect the usefulness
of a derived rejector since the goal of a rejector is to eliminate most of the classes most of the time, as
opposed to complete discrimination all of the time. We are implicitly assuming that in a large collection
of classes, pairs of classes which are difficult to discriminate occur relatively rarely, not that they do not
occur at all. In our object recognition application, this is indeed a very natural assumption.
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which the measurement vector might have come. The rejection domain of #, for the class,
Wi, is RV = {x € B : |(r,z) — (r,¢;)] > 6}, as illustrated in Figure 1. Equation (9) then
shows that W; N R?T = (), and hence 1, is well defined as a rejector.

The derived rejector may be implemented very efficiently as follows. (A slightly mod-
ified method more appropriate for use in a composite rejector is described in Appendix B.)
First, we compute the projection of the measurement vector, * € B, with the rejection
vector, to give (r,z). Then, the set of class labels, ¢, for which (r,z) lies in the interval,
[(r,e;) — 6i, (r,e;) + 6], can be computed with [log,(2n + 1)| comparisons and a lookup
table. This is possible because the derived rejector is a piecewise constant function. It
only changes its value at the 2n points, (r, ¢;) + ¢;. The constant values on the intervening
segments can easily be precomputed and stored in the lookup table. Finding the segment
in which (r, z) lies takes [log,(2n + 1)] comparisons using a binary search.

4.6 Choice of the Rejection Vector

We have seen that the derived rejector can be applied efficiently. The reason we can
expect it to be effective is because we have quite some freedom in choosing the direction
of the rejection vector, r. Thus far, r has only been constrained to lie orthogonally to
@, L;. We enforce this constraint immediately by taking each vector used from now on,
and subtracting the component in the space, @i L;.

As Figure 2 shows, we should choose the rejection vector to be the one that spreads
out the centers of the intervals, [(r,¢;) — 6;,(r,¢;) + é;], as much as possible. This will
reduce the size of |1, ()], and so tend to optimize the effectiveness of the derived rejector.
If variance is used to measure the spread of the centers, the best rejection vector to choose
is the first Karhunen-Loéve eigenvector!®, that is the one with the largest eigenvalue.

If there is just one class, as is in the feature detection application, the K-L expan-
sion cannot be applied because there is only one vector, ¢;. In this situation, we select
the rejection vector uniformly at random in the space orthogonal to @7, L;. As described
in [Knuth 81], this can be performed by drawing the d coordinates from a normal distribu-
tion, projecting out the component in @7 ;| L;, and then normalizing to obtain a rejection
vector that lies on the unit sphere, B.

10This choice of rejection vector may be seen to be closely related to Fisher’s discriminant analysis
[Fisher 36] [Duda and Hart 73]. By working in a space orthogonal to @;_, L;, we are limiting the within-
class scatter of each class, W;. Spreading out the points (r, ¢;), maximizes the between-class scatter. The
important difference, however, is the inherent conservative nature of the derived rejector, which ensures
we never make a wrong choice, and defers difficult decisions to subsequent rejectors which are in a better
position to discriminate between the difficult cases.
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Figure 3: The 20 objects used for recognition. We used 72 images of each object, with consecutive
images separated by 5° of pose. The data set is the same as used in [Murase and Nayar 95].

5 Experiments

The theory of pattern rejection is general and hence should find use in a variety of appli-
cations. Here, our objective is to demonstrate the generality, efficiency, and effectiveness
of composite rejectors. As examples, we have chosen two problems in computational vi-
sion, namely, 3-D object recognition and feature detection. These problems were selected
as they can, under certain assumptions, be cast as classical pattern recognition problems.
Furthermore, both problems often need to be solved with high efficiency.

5.1 3-D Object Recognition

There are several approaches to 3-D object recognition, most of which attempt to match fea-
tures in images to 3-D object models [Besl and Jain 85] [Chin and Dyer 86]. Recently, an
alternative approach called appearance matching has gained popularity, where objects are
modeled as collections of 2-D views [Edelman and Weinshall 91] [Poggio and Edelman 90]
[Murase and Nayar 95]. The main advantages and limitations of appearance matching are
described in [Murase and Nayar 95]. Similar view-based recognition techniques have also
been applied to the problem of face recognition [Pentland et al. 94] [Brunelli and Poggio 93]
[Sirovich and Kirby 87] [Turk and Pentland 91].

In our experiments, we use appearance matching simply as an example of the large
class of problems for which efficient rejectors can be constructed. For simplicity we as-
sume a constrained environment. We require that the object can be segmented from the
background, is not occluded substantially, and appears in unknown pose but in one of a
small number of stable configurations. Also, we assume that the illumination of the envi-
ronment remains more or less unchanged. Under these conditions, appearance matching,
as described in [Murase and Nayar 95], reduces object recognition to a classical pattern
recognition problem. We first segment the object, and then scale by resampling the image
so that the larger of the two object dimensions fits a preselected image size. In our imple-
mentation, the image size was 128 x 128 pixels. The scale normalized image is then treated
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Figure 4: An example rejector for the set of objects, {1, 5,13, 18,19}. Following the procedure in
Appendix B, we select 3 buckets, by = [-1.0,0.18], bz = [0.18,0.29] and b3 = [0.29,1.0]. If {r, z)
falls in bucket by, the rejector returns the set of class labels, {1,5,19}, if it falls in by the rejector
returns {18}, and if it falls in b3 the rejector returns {13}. Since the use of such a rejector involves
no more than a single dot product with the measurement vector followed by bin assignment,

rejection proves both efficient and effective.

as a 16,384 dimensional vector by reading pixel values in a raster scan fashion. Finally,
the image vector is intensity normalized to yield a unit vector which is fed as the input

measurement vector to our rejector.

We used 20 objects in our experiments, each corresponding to a class. A single
image of each object is displayed in Figure 3. We assume that each of the objects can
appear in just one stable configuration. Thus, the pose of the object with respect to the
viewer is given by a single rotation parameter. We used 72 images of each object taken at
5° intervals of pose. The images were divided into two sets, each set consisting of 36 images
separated by 10° of pose. One set of images was used as training samples that define the
classes, and the other set was reserved exclusively for testing the composite rejector.

We implemented a composite rejector for the 20 objects using the procedure outlined
in Section 4. As an example, Figure 4 shows one of the constituent rejectors. A representa-
tion of the entire composite rejector is illustrated in Figure 5, part of which is expanded in
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Figure 6. As can be seen in Figure 5, every leaf of the composite rejector contains a single
class. Hence, the composite rejector is capable of discriminating between the 20 objects
without ambiguity. It is guaranteed to assign a unique class to any input vector. This may
be regarded as fortunate. The aim of the rejector is simply to eliminate most of the objects,
and we would have regarded the rejector as successful even if each leaf had contained up to
2-3 objects that needed to be disambiguated using verifiers. We applied the rejector to all
72 images of each object, both the training images used for rejector construction as well as
the test images that we set aside. We found that the rejector gave 100% correct response in
both cases. It is worth noting that the composite rejector contains just 30 simple rejectors.
This should be compared with the number of subsets of 20 objects, which turns out to be
over 106,

As seen in Figure 5, the longest path in the composite rejector consists of 10 steps.
Hence, the maximum number of simple rejectors needed to eliminate all but one of the
classes is 10. By assuming that each image in the data set is equally likely to appear,
we calculated the average number of rejectors needed to be just 6.43. In other words,
the average run time of the composite rejector is the time it takes to compute 6.43 inner
products plus the small overhead of walking the path in the directed graph. Since at each
node there are at most 4 possible paths to take, making the decision consists of only two
comparisons. This efficiency compares very favorably with the results obtained by Murase
and Nayar [Murase and Nayar 95] on the same data. Their implementation based on the
Karhunen-Loéve expansion required 20 inner products, followed by a sophisticated search
procedure. If the time to calculate the inner products is the most important component
in the overall time cost, the composite rejector is approximately 3 times more efficient.
Further, given dedicated hardware to compute inner products, the rejector will yield even
better improvement in performance since we require no complex search procedure. In cases
where the composite rejector has leaves with multiple objects, tuned verifiers of the type
used by Murase and Nayar [Murase and Nayar 95] can be used at the leaves to complete
classification.

We investigated the growth rate of the number of rejectors required as a function
of the number of classes by considering subgraphs of the composite rejector. The set of
all vertices that can be reached from a given node in the composite rejector, can itself be
regarded as a composite rejector, but for a reduced subset of the 20 objects. So, for each
vertex in the graph, we approximated the average number of simple rejectors required for
the composite rejector rooted at that vertex. In Figure 7, the logarithm of the number of
classes for which the rejector is designed is plotted against the average number of rejectors
required. Where there are several composite rejectors for a similar number of classes,
we plot the average over all such cases. We calculated a least squares fit of a straight
line (shown as a solid line) to the data. It is evident that the data validates our previous
theoretical results and in particular equation (5). This equation predicted that the required
number of rejectors would be a logarithmic function of the number of objects.

Using the same image database, we now compare the performance of the composite
rejector against that of Fisher’s discriminant analysis [Fisher 36]. Again, we followed the
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Figure 5: A representation of the composite rejector. Each interior node denotes a single rejector
and is labeled with the set of objects that it is designed to act on. At each node, only one inner
product and a couple of comparisons need to be performed. Each leaf denotes a possible output
of the composite rejector. It is interesting to note that objects with similar “gross shape” tend
to group together at higher levels of the rejector, and are only separated closer to the leaves. For
example, the three toy cars (objects 3, 6, & 19) are almost indistinguishable until all other objects
are eliminated.
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Figure 7: A graph of the number of objects against the average number of simple rejectors
required to completely discriminate between objects. The graph is plotted using a log scale on
the abscissa, implying a logarithmic growth rate in the time complexity.

same test procedure, namely, setting aside half of the data, and using the other half to
construct the classifier. Then, we constructed the Fisher spaces [Duda and Hart 73] of
different dimensions. In Fisher space the classes consist of tight clusters, which we model
as multivariate normal distributions. We computed the mean and covariance matrix of
each of these distributions. Then, each measurement vector was classified by finding its
closest cluster, i.e. the cluster whose mean is closest to the vector. We used both the
Mahalanobis and Euclidean distances. Figure 8 shows the results plotted as a graph of
the percentage of test images correctly classified, against the dimension of the Fisher space
used. The results shown are for the combined performance on the training and test sets.
The classifier performs slightly better on the test set and slightly worse on the set aside
data. However, the difference between the two is always less than 1%.

The Mahalanobis distance gave consistently better results than the Euclidean dis-
tance. However, even for the Mahalanobis measure, classification results are not perfect.
In fact, the highest correct classification rate of 96.6% was attained for dimension 19. This
compares poorly with the perfect classification obtained by the composite rejector, that
uses an average of just 6.43 rejection vectors. The main reason for the rejector’s superior
performance is that its hierarchical structure eliminates classes step by step, while the re-
jector used at each step is optimal for the classes the step seeks to distinguish between.
As is seen in Figure 6, rejectors closer to the leaves are tuned to a reduced set of classes,
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Figure 8: Results of applying Fisher’s discriminant analysis to the data set in Figure 3. On
the abscissa we plot the dimension of the Fisher space used, and on the ordinate the percentage
of test images correctly classified. The peak performance is 96.6% correct, and to reach this
19 discriminant vectors are needed. In contrast, the composite rejector gives perfect (100%)
classification with just 6.43 rejection vectors. Hence, by both measures, efficiency and robustness,
the composite rejector outperforms Fisher’s discriminant analysis.

and so are less “distracted” by other classes. In contrast, all dimensions of the Fisher
space simultaneously seek to classify the entire set of classes. As a result, the second and
subsequent dimensions turn out to be suboptimal when compared with the second and
subsequent layers of a composite rejector.

5.2 Local Feature Detection

Another important problem in computational vision which can be reduced to pattern recog-
nition is the detection of local features (edges, lines, corners, etc.) in an image. The decision
of whether the local feature appears at a given pixel in an image, is based entirely on the
intensity values in a surrounding window of d pixels. Treating these intensity values as real
numbers, we have the classification space, S = R¢. If we can characterize the class, say,
Wy, of intensity vectors which represent the feature, the problem of feature detection is
reduced to deciding whether a measurement vector, + € Wy.

For lack of space, we will concentrate solely on the step edge as the example fea-
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Figure 9: The ideal model of a step edge. We consider a window of size 7 x 7 around the center
pixel. A straight line at angle 8 to the z-axis separates the window into two constant intensity
regions. When discretized, the pixels which the line passes through are assigned their intensity
levels using an anti-aliasing algorithm that calculates the average pixel intensity.

ture. The step edge is the simplest and most widely explored feature. FEfficient edge
detectors have been proposed, however, the more sophisticated detectors (for instance,
complete implementations of the Canny edge detector [Canny 86] and the Nalwa-Binford
detector[Nalwa and Binford 86]) are less efficient. Furthermore, elaborate detectors are
unavoidable in the case of more complex features, such as lines and corners, as shown
in [Nayar et al. 95]. For such features, there is no obvious equivalent to the gradient or
Laplacian operators that are often used for edges. In short, as a rule of thumb, high feature
complexity and/or high detection accuracy require the use of computationally expensive
detectors. This makes feature detection a prime candidate for the application of rejection
theory.

The major methods of edge detection are categorized in [Nalwa 93] by how they
define the set, Wy. Difference operators, such as the Canny edge operator [Canny 86] and
the Marr-Hildreth operator [Marr and Hildreth 80], implicitly define W; in terms of the
magnitude of the gradient (or the Laplacian), of the underlying image intensity function.
Model matching methods such as [Nalwa and Binford 86] define Wy using an ideal param-
eterized model of the edge, which is mapped into the classification space, S, by modeling
the imaging process. We follow the model based approach since it gives us an explicit,
rather than implicit, definition of Wj.

We used a three parameter model of a step edge, which is illustrated in Figure 9.
The edge model occupies a window that includes 7 x 7 pixels in the image, which leads to a
classification space of dimension, d = 49. The parameters consist of the two intensity levels,
A and B, on the opposite sides of the edge, and the angle, 8, of the edge. The following
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Figure 10: The edge rejector applied to 3 noisy synthetic images. The top row shows the noisy
images whose pixels the rejector is applied to. The image on the left has added Gaussian noise of
standard deviation 1 grey level, the middle image has noise of 2 grey levels, and the right image
has noise of 4 grey levels. The bottom row shows the output images produced by the edge rejector.
Each output image consists of rejected pixels (marked black) and candidate pixels (marked white)
that could be fed into an elaborate edge detector such as the one described in [Nayar et. al 95].

three step normalization allows us to eliminate both of the intensity parameters, A and B,
without effecting the underlying edge structure:

. _ T —_ 1 19
1. Given a vector x = (21,...,%49)" , calculate T = 55 - >7i2, 4.

2. Subtract T from each coordinate of = to get, 2’ = (x; — 7, ..., 249 — 7).

3. Calculate the norm ||z'|| of 2" and return the unit vector z'/||2/||.

If the input vector is found to conform to the edge model, the parameters A and B may be
recovered using, A, B ~ T £ ||2’||, the approximation arising from the fact that the images
are discretely sampled.

We constructed a composite rejector and applied it to a set of synthetic images
and to a real image. The results are displayed in Figures 10 and 11, respectively. The
synthetic images in Figure 10 are of size 256 x 256 pixels, and consists of a high intensity
polygon on a low intensity background. The polygon is bounded by 5 line segments at
angles 15.4°,67.4°,107.9°,187.9°, and 322.2° to the horizontal axis. The difference in the
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Figure 11: The edge rejector applied to a real scene. The output on the right consists of a large
number of pixels (marked black) which the rejection algorithm has quickly eliminated from further
consideration and a small number of pixels (marked white) which it has decided are candidates
to be verified by a sophisticated edge detector.

intensity across each segment is 50 grey levels. We used three synthetic images to which
we added Gaussian noise. In the first image the added noise had standard deviation 1 grey
level, the second 2 grey levels, and in the third 4 grey levels.

A composite rejector consisting of 6 rejectors was applied to each of the synthetic
images in Figure 10. The output images were passed through a simple relaxation algorithm
to remove a few scattered false positives. Since the rejector terminates as soon as it first
rejects the pixel as not containing an edge, not all 6 rejectors are used at all pixels. In the
least noisy image an average (computed over the whole image) of 1.61 rejectors were used.
For the more noisy images, 1.82 rejectors and 2.34 rejectors were used, respectively.

In Figure 11, we show similar results for a real image of size 393 x 289 pixels taken
in the laboratory. We used a composite rejector with 11 rejectors, of which an average of
1.81 were required at each pixel. Again, the output of the rejector is shown after it has
been passed through the relaxation algorithm to remove isolated false positives.

6 Discussion

Our major contribution has been to focus on computational (as opposed to representa-
tional) approaches to general recognition problems, and to introduce a framework, centered
upon the pattern classes, in which the complexity of such problems can be studied. More
specifically, the key results of our work include:

1. We have provided conditions for logarithmic growth in time complexity as a function
of the number of classes, and verified this behavior empirically for an important ap-
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plication in computational vision. However, further investigation of these conditions
is needed to enhance our understanding of when they can be expected to hold.

2. We analyzed the growth in the number of rejectors required to construct a composite
rejector. The key is the number of possible outputs of the rejectors and the amount
of intersection between them. This growth, rather than the time complexity, may
well turn out to the limiting factor in the scalability of rejection. A comparison with
the much less conservative k-d trees [Friedman et al. 77] would probably throw light
on what is essentially a time-space tradeoff.

3. The class assumption is at the heart of our technique for constructing rejectors. As
expected, it holds for some classes far more than for others. Further study of when
and why it holds would be useful. Given the derived relationship between rejection
and the K-L expansion, this is equivalent to asking how well the K-L expansion can
be expected to perform. This question was raised in the context of object recognition
in [Murase and Nayar 95] and still remains unanswered in that application.

4. We have compared pattern rejection with Fisher’s discriminant analysis and demon-
strated rejection to be superior. Although discriminant analysis is formally “optimal,”
its optimality is more with respect to representation and not efficiency. Further, it is
only the first Fisher vector that can really be regarded as optimal. We have shown
that far better accuracy, efficiency, and discriminating power results from the hierar-
chical structure of a composite rejector.
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A Estimation of the Thresholds

The only property the thresholds, é;, must comply with, for the derived rejector, ©,, to
behave correctly as a rejector, is that each class W; and its rejection domain RZPT, should
be disjoint. To ensure this, we only require:

ze Wi = |(r,z) — (r,e;)| <& (since then Def'n 8 = z ¢ RY") (11)

Further, the smaller we can make ¢; without compromising the correct behavior of the
rejector, the more effective we can expect ¥, to be.
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The exact details of how to estimate the best value of ¢; are largely application de-
pendent, since it depends heavily on the nature of the distribution of the random variable,
x — (r,z), and also the tolerance to error. One possibility is to select ¢; based on measure-
ments of the number of errors made by the implemented rejector. This was the approach
taken in our feature detection experiments, where careful adjustments can be made during
the design and testing of the feature detector. Another method is to assume a general
parameterized form for the distribution and select é; based on the estimated parameters of
the distribution. In the object recognition experiments, it was found empirically (see Fig-
ure 4) that the distributions for all objects reasonably approximated normal distributions.
To be conservative, we chose a confidence level of over 99.9%, and so é; was selected as 3.5
times the estimated standard deviation of the distribution.

B Implementation of the Derived Rejector

We address a potential problem with the original definition of the derived rejector. We
rewrite the definition here for convenience:

P€v(n) & |(ne) - (ne)l <6 (12)

The intervals, [(r, ¢;) — é;, (r, ¢;) + 6;], may overlap in complicated ways leading to a rejector
with a large number of different output sets, possibility as large as 2n. Hence, there is a
danger that this rejector design will lead to a very large composite rejector.

We redesign the rejector by introducing buckets which form a partition of [—1, 1].
The concept of a bucket is illustrated in Figure 12. We divide [—1, 1] into m neighboring
buckets, bq,..., b, where ¥j, b; = [cut;_1,cut;]. We also require that cutq = —1, and
cut,, = 1. Each point cut; is referred to as a cut-point. Once we have decided on the
cut-points, and hence the buckets, we associate with each bucket b; the set of classes W;
with which the bucket intersects the interval, [(r,¢;) — &;, (r,¢;) + 6]

classes(b;) = {i: b; N [{r,c;) — &, (rye;) + 6] # 0}. (13)
It follows from equation (13) that:
x € W;and (r,z) € b; = 1 € classes(b;) (14)

Hence, ¥, (x) = classes(b;), where b; is the unique bucket for which (r,z) € b;, is a valid
redefinition of a derived rejector. Using a binary search and a lookup table, the modified
rejector can be implemented with one inner product and a logarithmic (in the number of
buckets) number of comparisons. The new derived rejector will not be quite as effective
as the original one, but will lead to a much smaller composite rejector. This is a classic
example of the time-space trade-off.

The reason for introducing the notion of a bucket is so that we may carefully select
the cut-points, so as to follow the design guidelines introduced in Section 3.6. We use the
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Figure 12: The interval [—1, 1], which corresponds to all possible inner products with a rejection
vector, is partitioned into buckets. Neighboring buckets are separated by cut-points. Each bucket
is associated with a set of classes, namely, those which have a non-empty intersection with the
bucket. We amend the design of the derived rejector to return the set of classes associated with
the bucket into which the measurement vector is projected.

following algorithm that aims to: (a) keep the number of buckets, and hence the number
of outputs, small, (b) balance the sizes of the output subsets, classes(b;), and (c) minimize
the intersection between the output subsets:

Algorithm: Choice of the cut-points, {cut; : 7 =10,1,...,m}.
1. Initialize the set, J = {—1,1}.
2. Pt M ={(r,e;) —6;: i=1,2,...,n}U{(r,¢;)+ 6 : i=1,2,...,n}, and M' = 0.
3. Sort the set M. For each consecutive pair of numbers in M, put their mean in M’.

4. For each point, x € M’', in turn, insert x into J if and only if:

Vi=1,2,...,n, « & [(r,c) — 6, (r,c)+ 6] (15)

5. Add to J, the points which maximize over all y € M’, the expression:
min(|[{i : y < (r,e;) =i}, [{r: y > (r,c) + 6:}) (16)

6. Return the set of cut-points, J.
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